CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Plasmonic nanofillers-enabled solar membrane crystallization for mineral recovery
Authors
S. Abramovich
A. Agarwal
+9 more
M. Aquino
D. W. Boukhvalov
A. Cupolillo
E. Curcio
G. D'Olimpio
A. Politano
C. Rizza
M. B. Sadan
S. Santoro
Publication date
1 January 2023
Publisher
Elsevier B.V.
Doi
Abstract
Recently, the excitation of localized surface plasmon resonances in metal nanoparticles (NPs) has been exploited in membrane science (especially, membrane distillation) to overcome temperature polarization. However, the prohibitive costs of state-of-the-art plasmonic NPs such as Ag and Au have opened the quest of alternative materials. Here, we show that nanoscale photothermal effects activated by light irradiation on nanocomposite membranes made of a thin microporous coating of polydimethylsiloxane (PDMS) loaded with NiSe or CoSe NPs supported on polyvinylidene fluoride might be exploited to achieve crystallization of dissolved salts in brines. Explicitly, we demonstrate that the embodiment of the plasmonic NiSe and CoSe NPs is capable to originate an increase of the vaporization of the water from brine once the nanocomposite membranes are irradiated with sunlight, with the possibility to reach the supersaturation conditions, with the subsequent heterogeneous nucleation and crystallization of dissolved salts. © 2023Ministry of Science and Technology, MOST; Ministero degli Affari Esteri e della Cooperazione Internazionale, MAECIAP and MBS acknowledge the IVANHOE project funded by the Ministero degli Affari Esteri e della Cooperazione Internazionale (MAECI) for Italy and Ministry of Science and Technology (MOST) for Israel. DWB acknowledges research funding from Jiangsu Innovative and Entrepreneurial Talents Project
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 10/09/2023
Institutional repository of Ural Federal University named after the first President of Russia B.N.Yeltsin
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:elar.urfu.ru:10995/130540
Last time updated on 01/08/2024
IRIS Università degli Studi dell'Aquila
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ricerca.univaq.it:11697/22...
Last time updated on 12/04/2025