Scatterplot sampling has long been an efficient and effective way to resolve the overplotting issues commonly occurring in large-scale scatterplot visualization applications. However, it is challenging to preserve the existence of low-density points or outliers after sampling for a sub-sampling algorithm if, at the same time, faithfully representing the relative data densities is of importance. In this work, we propose to address this issue in a visual-assisted manner. While the whole dataset is sub-sampled, the density of the outliers is modeled and visually integrated into the final scatterplot together with the sub-sampled point data.
We showcase the effectiveness of our proposed method in various cases and user studies