Architecture of AdaptFFN.

Abstract

With the rapid development of ocean observation technology, underwater object detection has begun to occupy an essential position in the fields of aquaculture, environmental monitoring, marine science, etc. However, due to the problems unique to underwater images such as severe noise, blurred objects, and multi-scale, deep learning-based target detection algorithms lack sufficient capabilities to cope with these challenges. To address these issues, we improve DETR to make it well suited for underwater scenarios. First, a simple and effective learnable query recall mechanism is proposed to mitigate the effect of noise and can significantly improve the detection performance of the object. Second, for underwater small and irregular object detection, a lightweight adapter is designed to provide multi-scale features for the encoding and decoding stages. Third, the regression mechanism of the bounding box is optimized using the combination loss of smooth L1 and CIoU. Finally, we validate the designed network against other state-of-the-art methods on the RUOD dataset. The experimental results show that the proposed method is effective.</div

    Similar works

    Full text

    thumbnail-image

    Available Versions