CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Examining current bias and future projection consistency of globally downscaled climate projections commonly used in climate impact studies
Authors
Lucas Berio Fortini
Abby Frazier
Thomas W. Giambelluca
Lauren R. Kaiser
Publication date
1 December 2023
Publisher
Clark Digital Commons
Doi
Abstract
The associated uncertainties of future climate projections are one of the biggest obstacles to overcome in studies exploring the potential regional impacts of future climate shifts. In remote and climatically complex regions, the limited number of available downscaled projections may not provide an accurate representation of the underlying uncertainty in future climate or the possible range of potential scenarios. Consequently, global downscaled projections are now some of the most widely used climate datasets in the world. However, they are rarely examined for representativeness of local climate or the plausibility of their projected changes. Here we explore the utility of two such global datasets (CHELSA and WorldClim2) in providing plausible future climate scenarios for regional climate change impact studies. Our analysis was based on three steps: (1) standardizing a baseline period to compare available global downscaled projections with regional observation-based datasets and regional downscaled datasets; (2) bias correcting projections using a single observation-based baseline; and (3) having controlled differences in baselines between datasets, exploring the patterns and magnitude of projected climate shifts from these datasets to determine their plausibility as future climate scenarios, using Hawaiʻi as an example region. Focusing on mean annual temperature and precipitation, we show projected climate shifts from these commonly used global datasets not only may vary significantly from one another but may also fall well outside the range of future scenarios derived from regional downscaling efforts. As species distribution models are commonly created from these datasets, we further illustrate how a substantial portion of variability in future species distribution shifts can arise from the choice of global dataset used. Hence, projected shifts between baseline and future scenarios from these global downscaled projections warrant careful evaluation before use in climate impact studies, something rarely done in the existing literature. © 2023, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Clark University
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:commons.clarku.edu:faculty...
Last time updated on 24/01/2024