Abstract

International audienceThe SoLid experiment is a very-short-baseline experiment aimed at searching for nuclear reactor-produced active to sterile antineutrino oscillations. The detection principle is based on the pairing of two types of solid scintillators: polyvinyl toluene and 6^6LiF:ZnS(Ag), which is a new technology used in this field of Physics. In addition to good neutron-gamma discrimination, this setup allows the detector to be highly segmented (the basic detection unit is a 5 cm side cube). High segmentation provides numerous advantages, including the precise location of Inverse Beta Decay (IBD) products, the derivation of the considerate antineutrino energy estimator, and a powerful background reduction tool based on the topological signature of the signal. Finally, the system is read out by a network of wavelength-shifting fibres coupled to a photodetector (MPPC). This paper describes the design of the reconstruction algorithm that allows maximum use of the granularity of the detector. The goal of the algorithm is to convert the output of the optical-fibre readout to the list of the detection units from which it originated. This paper provides a performance comparison for three methods and concludes with a choice of the baseline approach for the experiment

    Similar works

    Full text

    thumbnail-image

    Available Versions