New and innovative applications in the field of electronics are rapidly emerging. Such applications often require flexible or stretchable substrates, lightweight and transparent materials, and design freedom. This paper offers a complete overview concerning flexible electronics manufacturing, focusing on the materials and technologies that have been recently developed. This combination of materials and technologies aims to fuel a fast, economical, and environmentally sustainable transition from the conventional to the novel and highly customizable electronics. Organic conductors, semiconductors, and dielectrics have recently gathered lots of attention since they are compatible with printing technologies, and can be easily spread over large and flexible substrates. These printing technologies are usually simple and fast procedures, which rely on low-cost and recycle-friendly materials, intended for large-scale fabrication. Overall, even though organic large-area electronics manufacturing is still in its early stages of development, it is a field with tremendous potential that holds promise to revolutionize the way products are designed, developed, and processed from the factory premises to the consumers’ hands. Besides, this technology is highly versatile and can be applied to a large array of sectors such as automotive, medical, home design, industrial, agricultural, among others.This work was supported by NORTE-06-3559-FSE-000018, integrated in the invitation NORTE-59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF), and by the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020, financed by FCT – Fundação para a Ciência e Tecnologia, Portugal. The authors also thank Prof. Luís A. Rocha for his support and guidance during the writing of this review work