The formation of plasma channels with nonuniformity of about +- 3.5% has been
demonstrated. The channels had a density of 1.2x10^19 cm-3 with a radius of 15
um and with length >= 2.5 mm. The channels were formed by 0.3 J, 100 ps laser
pulses in a nonflowing gas, contained in a cylindrical chamber. The laser beam
passed through the chamber along its axis via pinholes in the chamber walls. A
plasma channel with an electron density on the order of 10^18 - 10^19 cm-3 was
formed in pure He, N2, Ar, and Xe. A uniform channel forms at proper time
delays and in optimal pressure ranges, which depend on the sort of gas. The
influence of the interaction of the laser beam with the gas leaking out of the
chamber through the pinholes was found insignificant. However, the formation of
an ablative plasma on the walls of the pinholes by the wings of the radial
profile of the laser beam plays an important role in the plasma channel
formation and its uniformity. A low current glow discharge initiated in the
chamber slightly improves the uniformity of the plasma channel, while a high
current arc discharge leads to the formation of overdense plasma near the front
pinhole and further refraction of the laser beam. The obtained results show the
feasibility of creating uniform plasma channels in non-flowing gas targets.Comment: 15 pages, 7 figures, submitted to Physics of Plasma