Let S ⊆ R2 be a set of n sites in the plane, so that every site s ∈ S has an associated
radius rs > 0. Let D(S) be the disk intersection graph defined by S, i.e., the graph
with vertex set S and an edge between two distinct sites s, t ∈ S if and only if the
disks with centers s, t and radii rs , rt intersect. Our goal is to design data structures
that maintain the connectivity structure of D(S) as sites are inserted and/or deleted
in S. First, we consider unit disk graphs, i.e., we fix rs = 1, for all sites s ∈ S.
For this case, we describe a data structure that has O(log2 n) amortized update time
and O(log n/ log log n) query time. Second, we look at disk graphs with bounded
radius ratio Ψ, i.e., for all s ∈ S, we have 1 ≤ rs ≤ Ψ, for a parameter Ψ that is
known in advance. Here, we not only investigate the fully dynamic case, but also the
incremental and the decremental scenario, where only insertions or only deletions of
sites are allowed. In the fully dynamic case, we achieve amortized expected update
time O(Ψ log4 n) and query time O(log n/ log log n). This improves the currently
best update time by a factor of Ψ. In the incremental case, we achieve logarithmic
dependency on Ψ, with a data structure that has O(α(n)) amortized query time and
O(log Ψ log4 n) amortized expected update time, where α(n) denotes the inverse Ackermann
function. For the decremental setting, we first develop an efficient decremental
disk revealing data structure: given two sets R and B of disks in the plane, we can delete
disks from B, and upon each deletion, we receive a list of all disks in R that no longer
intersect the union of B. Using this data structure, we get decremental data structures
with a query time of O(log n/ log log n) that supports deletions in O(n log Ψ log4 n)
overall expected time for disk graphs with bounded radius ratio Ψ and O(n log5 n)
overall expected time for disk graphs with arbitrary radii, assuming that the deletion
sequence is oblivious of the internal random choices of the data structures