research
Liquidus Phases of the Richardson H5 Chondrite at High Pressures and Temperatures
- Publication date
- Publisher
Abstract
Part of early mantle evolution may include a magma ocean, where core formation began before the proto-Earth reached half of its present radius. Temperatures were high and bombardment and accretion were still occurring, suggesting that the proto-Earth consisted of a core and an at least partially liquid mantle, the magma ocean. As the Earth accreted, pressure near the core increased and the magma ocean decreased in volume and became shallower as it began to cool and solidify. As crystals settled, or floated, the composition of the magma ocean could change significantly and begin to crystallize different minerals from the residual liquid. Therefore, the mantle may be stratified following the P-T phase diagram for the bulk silicate Earth. To understand mantle evolution, it is necessary to know liquidus phase relations at high pressures and temperatures. In order to model the evolution of the magma ocean, high pressure and temperature experiments have been conducted to simulate the crystallization process using a range of materials that most likely resemble the bulk composition of the early Earth