'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
Hyperspectral images have its applications in various fields. Here, hyperspectral image from PRISMA which is a fundamental satellite of Italian Space Agency is being used for discriminating the wildfire fuel types on Sardinian Island of Italy. PRISMA is an on-demand mission and the available data in the archive are limited. There is no literature available on land use/vegetation classification using PRISMA data. In this paper, a new approach for generating samples to form a dataset for classifying the wildfire fuels and for classifying mixed pixels using iso-bioclimatic conditions are proposed. The classified map created using the dataset and using the iso-bioclimatic conditions is been validated. From the accuracy assessment, SVM classifier showed an overall accuracy of 86% and kappa coefficient of 0.79. Then, the classified map is converted into fuel map. This study suggests that the proposed approach can be used to generate samples for land use/vegetation classification and to assign vegetation types to mixed pixels depending upon the iso-bioclimatic conditions