slides

Discovery of the Neutron Star Spin Frequency in EXO 0748-676

Abstract

We report the results of a search for burst oscillations during thermonuclear X-ray bursts from the low mass X-ray binary (LMXB) EXO 0748-676. With the proportional counter array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) we detected a 45 Hz oscillation in the average power spectrum of 38 thermonuclear X-ray bursts from this source. We computed power spectra with 1 Hz frequency resolution for both the rising and decaying portions of 38 X-ray bursts from the public RXTE archive. We averaged the 1 Hz power spectra and detected a significant signal at 45 Hz in the decaying phases of the bursts. The signal is detected at a significance level of 4 x 10^-8. No similar signal was detected in the rising intervals. A fit to the oscillation peak at 0.25 Hz resolution gives a frequency of 44.7 +/- 0.06 Hz and an oscillation quality factor of Q = 80 +/- 18. The average signal amplitude is 3% (rms). The detection of 45 Hz burst oscillations from EXO 0748-676 provides compelling evidence that this is the neutron star spin frequency in this system. We use the inferred spin frequency to model the widths of absorption lines from the neutron star surface and show that the widths of the absorption lines from EXO 0748-676 recently reported by Cottam et al. are consistent with a 45 Hz spin frequency as long as the neutron star radius is in the range from about 9.5-15 km. With a known spin frequency, precise modelling of the line profiles from EXO 0748-676 holds great promise for constraining the dense matter equation of state.Comment: 13 pages, 5 figures, to be published in ApJ

    Similar works

    Full text

    thumbnail-image