CONTEXT: The variable X-ray spectra of AGN systematically show steep
power-law high states and hard-spectrum low states. The hard low state has
previously been found to be a component with only weak variability. The origin
of this component and the relative importance of effects such as absorption and
relativistic blurring are currently not clear. AIMS: In a follow-up of previous
principal components analysis, we aim to determine the relative importance of
scattering and absorption effects on the time-varying X-ray spectrum of the
narrow-line Seyfert 1 galaxy Mrk~766. METHODS: Time-resolved spectroscopy,
slicing XMM and Suzaku data down to 25 ks elements, is used to investigate
whether absorption or scattering components dominate the spectral variations in
Mrk 766.Time-resolved spectroscopy confirms that spectral variability in Mrk
766 can be explained by either of two interpretations of principal components
analysis. Detailed investigation confirm rapid changes in the relative
strengths of scattered and direct emission or rapid changes in absorber
covering fraction provide good explanations of most of the spectral
variability. However, a strong correlation between the 6.97 keV absorption line
and the primary continuum together with rapid opacity changes show that
variations in a complex and multi-layered absorber, most likely a disk wind,
are the dominant source of spectral variability in Mrk 76