Light-Quark SU(3)SU(3) Flavour Splitting of Heavy-Light Constituent Diquark Masses and Doubly-Strange Diquarks from QCD Sum-Rules

Abstract

QCD Laplace sum-rules are used to examine the constituent mass spectrum of JP∈{0+,1+}J^P\in\{0^+,1^+\} heavy-light [Qq] diquarks with Q∈{c,b}Q\in\{c,b\} and q∈{u,d,s}q\in\{u,d,s\}. As in previous sum-rule studies, the negative parity JP∈{0βˆ’,1βˆ’}J^P\in\{0^-, 1^-\} [Qq] diquark mass predictions do not stabilize, so the sum-rule analysis focuses on positive parity [Qq] diquarks. Doubly-strange JP=1+J^P=1^{+} [ss] diquarks are also examined, but the resulting sum rules do not stabilize. Hence there is no sum-rule evidence for JP=1+J^P=1^{+} [ss] diquark states, aiding the interpretation of sum-rule analyses of fully-strange tetraquark states. The SU(3) flavour splitting effects for [Qq] diquarks are obtained by calculating QCD correlation functions of JP∈{0+,1+}J^P\in\{0^+,1^+\} diquark composite operators up to next-to-leading order in perturbation theory, leading-order in the strange quark mass, and in the chiral limit for non-strange (u,d) quarks with an isospin-symmetric vacuum =<uΛ‰u>==<\bar uu>=. Apart from the strange quark mass parameter msm_s, the strange quark condensate parameter ΞΊ=/\kappa=/ has an important impact on SU(3) flavour splittings. A Laplace sum-rule analysis methodology is developed for the mass difference M[Qs]βˆ’M[Qn]M_{[Qs]}-M_{[Qn]} between the strange and non-strange heavy-light diquarks to reduce the theoretical uncertainties from all other QCD input parameters. The mass splitting is found to decrease with increasing ΞΊ\kappa, providing an upper bound on ΞΊ\kappa where the M[Qs]βˆ’M[Qn]M_{[Qs]}-M_{[Qn]} mass hierarchy reverses. In the typical QCD sum-rule range 0.56<ΞΊ<0.740.56<\kappa< 0.74, 55Β MeV<M[cs]βˆ’M[cn]<100Β MeV55~MeV < M_{[cs]}-M_{[cn]} < 100~MeV and 75Β MeV<M[bs]βˆ’M[bn]<150Β MeV75~MeV < M_{[bs]}-M_{[bn]}< 150~MeV, with a slight tendency for larger splittings for the JP=1+J^P=1^+ channels. These constituent mass splitting results are discussed in comparison with values used in constituent diquark models for tetraquark and pentaquark hadronic states.Comment: 30 pages, 19 figures, 7 tables. v2 contains extended discussio

    Similar works

    Full text

    thumbnail-image

    Available Versions