thesis

Tantalum-based diffusion barriers for copper metallization

Abstract

Interfacial reactions between Cu and Si with different Ta-based diffusion barriers are investigated by means of the combined thermodynamic-kinetic and microstructural analysis. The reaction mechanisms and the related microstructures in the Si/Ta/Cu, Si/TaC/Cu and Si/Ta2N/Cu metallization systems are studied experimentally and theoretically by utilizing the ternary Si-Ta-Cu, Si-Ta-C, Si-Ta-N, Ta-C-Cu, and Ta-N-Cu phase diagrams as well as the activity diagrams calculated at different temperatures. The effects of oxygen on the reactions in the Si/Ta/Cu and Si/TaC/Cu metallization systems are investigated by employing also the evaluated Ta-O and Ta-C-O phase diagrams. The experimental investigations are carried out with the help of sheet resistance measurements, x-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM), secondary ion mass spectroscopy (SIMS) and transmission electron microscopy (TEM). It is shown that by using the combined thermodynamic-kinetic approach a better understanding about the reactions taking place in the Si/Cu diffusion couples with different Ta-based diffusion barriers can be achieved. The diffusion barrier solutions using Ta are good candidates for practical applications.reviewe

    Similar works