CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Proficiency of real-time PCR detection of latent Monilinia spp. infection in nectarine flowers and fruit
Authors
A. Beniusis
Antonieta De Cal Cortina
+7 more
K. Değirmenci
C. Garcia-Benitez
C. Guinet
P. Melgarejo
L. Riccioni
M. T. Valente
S. Özben
Publication date
1 January 2017
Publisher
Firenze University Press
Doi
Cite
Abstract
Rapid and reliable detection of Monilinia latent infections is needed to prevent and control dispersion of Monilinia spp. in infected localities and non-infected countries. A fast multiplex quantitative real-time PCR method (qPCR) for the detection and identification of Monilinia spp. latent infections in blossoms and fruit of nectarine trees (Prunus persica var. nucipersica) was tested in an inter-laboratory trial. The test performance study involving five laboratories was conducted to validate the sensitivity and specificity of several real-time PCR platforms for the detection of low amounts of Monilinia DNA (latent infections), using a common protocol, and to identify possible difficulties when these tests were implemented by diagnostic laboratories or national reference centres. The method has two hydrolysis probes distinguishing between Monilinia fructicola and M. fructigena/M. laxa. Validation included test performance accuracy, analytical specificity and sensitivity, repeatability, and reproducibility, as defined by standard PM7/98 of the European Plant Protection Organization (EPPO). All qPCR platforms detected Monilinia latent infections and mycelium samples with both hydrolysis probes, and healthy flowers and fruit samples gave negative results. The method specificity was consistent between different laboratories, despite different equipment used, and there were no laboratories with z-scores in the unacceptable region. Monilinia fructicola latent infection samples were correctly detected by all laboratories, but some M. laxa samples were cross-detected as if they were M. fructicola. Monilinia laxa cross-detection could be compensated by including the allelic discrimination step in qPCR runs, which permitted differentiating between M. fructicola and M. laxa samples. The inter-laboratory comparison demonstrated the robustness of the developed method and confirmed in-house validation data. This method could be used to detect latent infections of Monilinia in asymptomatic nectarine fruit and flowers. © 2017 Author(s)
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Digital.CSIC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:digital.csic.es:10261/2935...
Last time updated on 11/03/2023
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:ba00c25ea...
Last time updated on 04/06/2019