The flammability and brittleness of unsaturated polyester
resin
(UPR) were two serious problems that limited its application in high-precision
fields. Here, the rod-shaped hydroxyapatite (HAP) was anchored on
the surface of hydroxylated black phosphorus nanosheets (BP–OH)
through a hydrothermal reaction to obtain a highly stable black phosphorus-based
nano flame retardant (BP–OH@HAP). Owing to the exposure of
many hydroxyl groups, BP–OH@HAP was well dispersed in the UPR
matrix, and UPR nanocomposites with 0.5 wt % BP–OH@HAP realized
a 71% increase in impact strength. The presence of BP–OH@HAP
also greatly inhibited the combustion of UPR nanocomposites. In detail,
the UPR composites with 2 wt % BP–OH@HAP achieved a 47.0% decrease
in peak heat release rate (PHRR) along with 23.1% reductions in total
heat release (THR), revealing the excellent ability of BP–OH@HAP
to inhibit polymer combustion. In addition, UPR/BP–OH@HAP 2.0
achieved a 46 s increase in the time to PHRR (tPHRR) and a 62% reduction
in the fire growth index (FGI), indicating that the fire spread of
UPR/BP–OH@HAP 2.0 was significantly suppressed. Therefore,
this work obtained the UPR/BP–OH@HAP nanocomposite with high
fire safety through the innovation of inorganic nanotechnology, which
provided new research ideas for improving the toughness and flame-retardant
properties of UPR-based nanocomposites