Production of VEGF165 by Ewing's sarcoma cells induces vasculogenesis and the incorporation of CD34+ stem cells into the expanding tumor vasculature

Abstract

The Ewing's sarcoma cell line TC71 overexpresses vascular endothelial growth factor isoform 165 (VEGF165), a potent proangiogenic molecule that induces endothelial cell proliferation, migration, and chemotaxis. CD34+ bone marrow stem cells can differentiate into endothelial and hematopoietic cells. We used a transplant model to determine whether CD34 + cells migrate from the bone marrow to Ewing's sarcoma tumors and participate in the neovascularization process that supports tumor growth. We also examined the role of VEGF165 in CD34+ cell migration. Human umbilical cord CD34+ cells were transplanted into sublethally irradiated severe combined immunodeficient mice. Seven days later, the mice were injected subcutaneously with TC71 tumor cells. Tumors were excised 2 weeks later and analyzed by immunohistochemistry. The tumor sections expressed both human VE-cadherin and mouse CD31, indicating involvement of donor-derived human cells in the tumor vessels. To determine the role of VEGF165 in the chemoattraction of CD34+ cells, we generated two VEGF 165-deficient TC71 clones, a stable anti-sense VEGF165 cell line (Clone 17) and a VEGF165 siRNA-inhibited clone (TC/siVEGF7-1). The resulting VEGF165-deficient tumor cells had normal growth rates in vitro, but had delayed growth when implanted into mice. Immunohistochemical analysis revealed decreased infiltration of CD34+ cells into both VEGF165-deficient tumors. These data show that bone marrow stem cells contribute to the growing tumor vasculature in Ewing's sarcoma and that VEGF165 is critical for the migration of CD34+ cells from the bone marrow into the tumor. © 2006 Wiley-Liss, Inc.Fil: Lee, Tim H.. University of Texas; Estados UnidosFil: Bolontrade, Marcela Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. University of Texas; Estados UnidosFil: Worth, Laura L.. University of Texas; Estados UnidosFil: Guan, Hui. University of Texas; Estados UnidosFil: Ellis, Lee M.. University of Texas; Estados UnidosFil: Kleinerman, Eugenie S.. University of Texas; Estados Unido

    Similar works