Neuromorphic nanocluster networks: Critical role of the substrate in nano-link formation

Abstract

Atomic cluster-based networks represent a promising architecture for the realization of neuromorphic computing systems, which may overcome some of the limitations of the current computing paradigm. The formation and breakage of synapses between the clusters are of utmost importance for the functioning of these computing systems. This paper reports the results of molecular dynamics simulations of synapse (bridge) formation at elevated temperatures and thermal breaking processes between 2.8 nanometer-sized Au1415_{1415} clusters deposited on a carbon substrate, a model system. Crucially, we find that the bridge formation process is driven by the diffusion of gold atoms along the substrate, however small the gap between the clusters themselves. The complementary simulations of the bridge-breaking process reveal the existence of a threshold bias voltage to activate bridge rupture via Joule heating. These results provide an atomistic-level understanding of the fundamental dynamical processes occurring in neuromorphic cluster arrays

    Similar works

    Full text

    thumbnail-image

    Available Versions