This paper presents a novel approach to enhance autonomous robotic
manipulation using the Large Language Model (LLM) for logical inference,
converting high-level language commands into sequences of executable motion
functions. The proposed system combines the advantage of LLM with YOLO-based
environmental perception to enable robots to autonomously make reasonable
decisions and task planning based on the given commands. Additionally, to
address the potential inaccuracies or illogical actions arising from LLM, a
combination of teleoperation and Dynamic Movement Primitives (DMP) is employed
for action correction. This integration aims to improve the practicality and
generalizability of the LLM-based human-robot collaboration system.Comment: IEEE MHS 202