Constraining the geometry of the reflection nebula NGC 2023 with [O I]: Emission & Absorption

Abstract

We have mapped the NGC 2023 reflection nebula in the 63 and 145 micron transitions of [O I] and the 158 micron [C II] spectral lines using the heterodyne receiver upGREAT on SOFIA. The observations were used to identify the diffuse and dense components of the PDR traced by the [C II] and [O I] emission, respectively. The velocity-resolved observations reveal the presence of a significant column of low-excitation atomic oxygen, seen in absorption in the [O I] 63 micron spectra, amounting to about 20-60% of the oxygen column seen in emission in the [O I] 145 micron spectra. Some self-absorption is also seen in [C II], but for the most part it is hardly noticeable. The [C II] and [O I] 63 micron spectra show strong red- and blue-shifted wings due to photo evaporation flows especially in the southeastern and southern part of the reflection nebula, where comparison with the mid- and high-J CO emission indicates that the C+ region is expanding into a dense molecular cloud. Using a two-slab toy model the large-scale self-absorption seen in [O I] 63 micron is readily explained as originating in foreground low-excitation gas associated with the source. Similar columns have also been observed recently in other Galactic photon-dominated-regions (PDRs). These results have two implications: for the velocity-unresolved extra-galactic observations this could impact the use of [O I] 63 micron as a tracer of massive star formation and secondly the widespread self-absorption in [O I] 63 micron leads to underestimate of the column density of atomic oxygen derived from this tracer and necessitates the use of alternative indirect methods.Comment: Accepted for publication in MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions