CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Testing Cluster Properties of Signed Graphs
Authors
Florian Adriaens
Simon Apers
Publication date
30 April 2023
Publisher
ACM
Doi
Abstract
Publisher Copyright: © 2023 Owner/Author.This work initiates the study of property testing in signed graphs, where every edge has either a positive or a negative sign. We show that there exist sublinear query and time algorithms for testing three key properties of signed graphs: balance (or 2-clusterability), clusterability and signed triangle freeness. We consider both the dense graph model, where one queries the adjacency matrix entries of a signed graph, and the bounded-degree model, where one queries for the neighbors of a node and the sign of the connecting edge. Our algorithms use a variety of tools from unsigned graph property testing, as well as reductions from one setting to the other. Our main technical contribution is a sublinear algorithm for testing clusterability in the bounded-degree model. This contrasts with the property of k-clusterability in unsigned graphs, which is not testable with a sublinear number of queries in the bounded-degree model. We experimentally evaluate the complexity and usefulness of several of our testers on real-life and synthetic datasets.Peer reviewe
Similar works
Full text
Available Versions
Helsingin yliopiston digitaalinen arkisto
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:helda.helsinki.fi:10138/35...
Last time updated on 11/08/2023