In recent years, deep face recognition methods have demonstrated impressive
results on in-the-wild datasets. However, these methods have shown a
significant decline in performance when applied to real-world low-resolution
benchmarks like TinyFace or SCFace. To address this challenge, we propose a
novel classification consistency knowledge distillation approach that transfers
the learned classifier from a high-resolution model to a low-resolution
network. This approach helps in finding discriminative representations for
low-resolution instances. To further improve the performance, we designed a
knowledge distillation loss using the adaptive angular penalty inspired by the
success of the popular angular margin loss function. The adaptive penalty
reduces overfitting on low-resolution samples and alleviates the convergence
issue of the model integrated with data augmentation. Additionally, we utilize
an asymmetric cross-resolution learning approach based on the state-of-the-art
semi-supervised representation learning paradigm to improve discriminability on
low-resolution instances and prevent them from forming a cluster. Our proposed
method outperforms state-of-the-art approaches on low-resolution benchmarks,
with a three percent improvement on TinyFace while maintaining performance on
high-resolution benchmarks.Comment: 2023 IEEE International Joint Conference on Biometrics (IJCB