Fast stochastic dual coordinate descent algorithms for linearly constrained convex optimization

Abstract

The problem of finding a solution to the linear system Ax=bAx = b with certain minimization properties arises in numerous scientific and engineering areas. In the era of big data, the stochastic optimization algorithms become increasingly significant due to their scalability for problems of unprecedented size. This paper focuses on the problem of minimizing a strongly convex function subject to linear constraints. We consider the dual formulation of this problem and adopt the stochastic coordinate descent to solve it. The proposed algorithmic framework, called fast stochastic dual coordinate descent, utilizes sampling matrices sampled from user-defined distributions to extract gradient information. Moreover, it employs Polyak's heavy ball momentum acceleration with adaptive parameters learned through iterations, overcoming the limitation of the heavy ball momentum method that it requires prior knowledge of certain parameters, such as the singular values of a matrix. With these extensions, the framework is able to recover many well-known methods in the context, including the randomized sparse Kaczmarz method, the randomized regularized Kaczmarz method, the linearized Bregman iteration, and a variant of the conjugate gradient (CG) method. We prove that, with strongly admissible objective function, the proposed method converges linearly in expectation. Numerical experiments are provided to confirm our results.Comment: arXiv admin note: text overlap with arXiv:2305.0548

    Similar works

    Full text

    thumbnail-image

    Available Versions