Stone Needle: A General Multimodal Large-scale Model Framework towards Healthcare

Abstract

In healthcare, multimodal data is prevalent and requires to be comprehensively analyzed before diagnostic decisions, including medical images, clinical reports, etc. However, current large-scale artificial intelligence models predominantly focus on single-modal cognitive abilities and neglect the integration of multiple modalities. Therefore, we propose Stone Needle, a general multimodal large-scale model framework tailored explicitly for healthcare applications. Stone Needle serves as a comprehensive medical multimodal model foundation, integrating various modalities such as text, images, videos, and audio to surpass the limitations of single-modal systems. Through the framework components of intent analysis, medical foundation models, prompt manager, and medical language module, our architecture can perform multi-modal interaction in multiple rounds of dialogue. Our method is a general multimodal large-scale model framework, integrating diverse modalities and allowing us to tailor for specific tasks. The experimental results demonstrate the superior performance of our method compared to single-modal systems. The fusion of different modalities and the ability to process complex medical information in Stone Needle benefits accurate diagnosis, treatment recommendations, and patient care

    Similar works

    Full text

    thumbnail-image

    Available Versions