Synchronization of phase oscillators due to nonlocal coupling mediated by the slow diffusion of a substance

Abstract

Many systems of physical and biological interest are characterized by assemblies of phase oscillators whose interaction is mediated by a diffusing chemical. The coupling effect results from the fact that the local concentration of the mediating chemical affects both its production and absorption by each oscillator. Since the chemical diffuses through the medium in which the oscillators are embedded, the coupling among oscillators is non-local: it considers all the oscillators depending on their relative spatial distances. We considered a mathematical model for this coupling, when the diffusion time is arbitrary with respect to the characteristic oscillator periods, yielding a system of coupled nonlinear integro-differential equations which can be solved using Green functions for appropriate boundary conditions. In this paper we show numerical solutions of these equations for three finite domains: a linear one-dimensional interval, a rectangular, and a circular region, with absorbing boundary conditions. From the numerical solutions we investigate phase and frequency synchronization of the oscillators, with respect to changes in the coupling parameters for the three considered geometries

    Similar works

    Full text

    thumbnail-image

    Available Versions