Structural bias or segregation of networks refers to situations where two or
more disparate groups are present in the network, so that the groups are highly
connected internally, but loosely connected to each other. In many cases it is
of interest to increase the connectivity of disparate groups so as to, e.g.,
minimize social friction, or expose individuals to diverse viewpoints. A
commonly-used mechanism for increasing the network connectivity is to add edge
shortcuts between pairs of nodes. In many applications of interest, edge
shortcuts typically translate to recommendations, e.g., what video to watch, or
what news article to read next. The problem of reducing structural bias or
segregation via edge shortcuts has recently been studied in the literature, and
random walks have been an essential tool for modeling navigation and
connectivity in the underlying networks. Existing methods, however, either do
not offer approximation guarantees, or engineer the objective so that it
satisfies certain desirable properties that simplify the optimization~task. In
this paper we address the problem of adding a given number of shortcut edges in
the network so as to directly minimize the average hitting time and the maximum
hitting time between two disparate groups. Our algorithm for minimizing average
hitting time is a greedy bicriteria that relies on supermodularity. In
contrast, maximum hitting time is not supermodular. Despite, we develop an
approximation algorithm for that objective as well, by leveraging connections
with average hitting time and the asymmetric k-center problem.Comment: To appear in KDD 202