Tensor train optimization of parametrized quantum circuits

Abstract

We examine a particular realization of derivative-free method as implemented on tensor train based optimization to the variational quantum eigensolver. As an example, we consider parametrized quantum circuits composed of a low-depth hardware-efficient ansatz and Hamiltonian variational ansatz for addressing the ground state of the transverse field Ising model. We further make a comparison with gradient-based optimization techniques and discuss on the advantage of using tensor train based optimization, especially in the presence of noise.Comment: 7 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions