Carbon dredge-up required to explain the Gaia white dwarf colour-magnitude bifurcation

Abstract

The Gaia colour--magnitude diagram reveals a striking separation between hydrogen-atmosphere white dwarfs and their helium-atmosphere counterparts throughout a significant portion of the white dwarf cooling track. However, pure-helium atmospheres have Gaia magnitudes that are too close to the pure-hydrogen case to explain this bifurcation. To reproduce the observed split in the cooling sequence, it has been shown that trace amounts of hydrogen and/or metals must be present in the helium-dominated atmospheres of hydrogen-deficient white dwarfs. Yet, a complete explanation of the Gaia bifurcation that takes into account known constraints on the spectral evolution of white dwarfs has thus far not been proposed. In this work, we attempt to provide such a holistic explanation by performing population synthesis simulations coupled with state-of-the-art model atmospheres and evolutionary calculations that account for element transport in the envelopes of white dwarfs. By relying on empirically grounded assumptions, these simulations successfully reproduce the bifurcation. We show that the convective dredge-up of optically undetectable traces of carbon from the deep interior is crucial to account for the observations. Neither the convective dilution/mixing of residual hydrogen nor the accretion of hydrogen or metals can be the dominant drivers of the bifurcation. Finally, we emphasize the importance of improving theoretical models for the average ionization level of carbon in warm dense helium, which governs the shape of the diffusive tail of carbon and in turn the predicted amount of dredged-up carbon.Comment: Accepted for publication in MNRAS, minor changes following reports from reviewer

    Similar works