research

Risk and return: evaluating Reverse Tracing of Precursors earthquake predictions

Abstract

In 2003, the Reverse Tracing of Precursors (RTP) algorithm attracted the attention of seismologists and international news agencies when researchers claimed two successful predictions of large earthquakes. These researchers had begun applying RTP to seismicity in Japan, California, the eastern Mediterranean and Italy; they have since applied it to seismicity in the northern Pacific, Oregon and Nevada. RTP is a pattern recognition algorithm that uses earthquake catalogue data to declare alarms, and these alarms indicate that RTP expects a moderate to large earthquake in the following months. The spatial extent of alarms is highly variable and each alarm typically lasts 9 months, although the algorithm may extend alarms in time and space. We examined the record of alarms and outcomes since the prospective application of RTP began, and in this paper we report on the performance of RTP to date. To analyse these predictions, we used a recently developed approach based on a gambling score, and we used a simple reference model to estimate the prior probability of target earthquakes for each alarm. Formally, we believe that RTP investigators did not rigorously specify the first two ‘successful' predictions in advance of the relevant earthquakes; because this issue is contentious, we consider analyses with and without these alarms. When we included contentious alarms, RTP predictions demonstrate statistically significant skill. Under a stricter interpretation, the predictions are marginally unsuccessfu

    Similar works