Joint Device-Edge Digital Semantic Communication with Adaptive Network Split and Learned Non-Linear Quantization

Abstract

Semantic communication, an intelligent communication paradigm that aims to transmit useful information in the semantic domain, is facilitated by deep learning techniques. Although robust semantic features can be learned and transmitted in an analog fashion, it poses new challenges to hardware, protocol, and encryption. In this paper, we propose a digital semantic communication system, which consists of an encoding network deployed on a resource-limited device and a decoding network deployed at the edge. To acquire better semantic representation for digital transmission, a novel non-linear quantization module is proposed with the trainable quantization levels that efficiently quantifies semantic features. Additionally, structured pruning by a sparse scaling vector is incorporated to reduce the dimension of the transmitted features. We also introduce a semantic learning loss (SLL) function to reduce semantic error. To adapt to various channel conditions and inputs under constraints of communication and computing resources, a policy network is designed to adaptively choose the split point and the dimension of the transmitted semantic features. Experiments using the CIFAR-10 dataset for image classification are employed to evaluate the proposed digital semantic communication network, and ablation studies are conducted to assess the proposed modules including the quantization module, structured pruning and SLL

    Similar works

    Full text

    thumbnail-image

    Available Versions