Self-Supervised Scene Dynamic Recovery from Rolling Shutter Images and Events


Scene Dynamic Recovery (SDR) by inverting distorted Rolling Shutter (RS) images to an undistorted high frame-rate Global Shutter (GS) video is a severely ill-posed problem, particularly when prior knowledge about camera/object motions is unavailable. Commonly used artificial assumptions on motion linearity and data-specific characteristics, regarding the temporal dynamics information embedded in the RS scanlines, are prone to producing sub-optimal solutions in real-world scenarios. To address this challenge, we propose an event-based RS2GS framework within a self-supervised learning paradigm that leverages the extremely high temporal resolution of event cameras to provide accurate inter/intra-frame information. % In this paper, we propose to leverage the event camera to provide inter/intra-frame information as the emitted events have an extremely high temporal resolution and learn an event-based RS2GS network within a self-supervised learning framework, where real-world events and RS images can be exploited to alleviate the performance degradation caused by the domain gap between the synthesized and real data. Specifically, an Event-based Inter/intra-frame Compensator (E-IC) is proposed to predict the per-pixel dynamic between arbitrary time intervals, including the temporal transition and spatial translation. Exploring connections in terms of RS-RS, RS-GS, and GS-RS, we explicitly formulate mutual constraints with the proposed E-IC, resulting in supervisions without ground-truth GS images. Extensive evaluations over synthetic and real datasets demonstrate that the proposed method achieves state-of-the-art and shows remarkable performance for event-based RS2GS inversion in real-world scenarios. The dataset and code are available at

    Similar works

    Full text


    Available Versions