The robustness of 3D perception systems under natural corruptions from
environments and sensors is pivotal for safety-critical applications. Existing
large-scale 3D perception datasets often contain data that are meticulously
cleaned. Such configurations, however, cannot reflect the reliability of
perception models during the deployment stage. In this work, we present Robo3D,
the first comprehensive benchmark heading toward probing the robustness of 3D
detectors and segmentors under out-of-distribution scenarios against natural
corruptions that occur in real-world environments. Specifically, we consider
eight corruption types stemming from adversarial weather conditions, external
disturbances, and internal sensor failure. We uncover that, although promising
results have been progressively achieved on standard benchmarks,
state-of-the-art 3D perception models are at risk of being vulnerable to
corruptions. We draw key observations on the use of data representations,
augmentation schemes, and training strategies, that could severely affect the
model's performance. To pursue better robustness, we propose a
density-insensitive training framework along with a simple flexible
voxelization strategy to enhance the model resiliency. We hope our benchmark
and approach could inspire future research in designing more robust and
reliable 3D perception models. Our robustness benchmark suite is publicly
available.Comment: 33 pages, 26 figures, 26 tables; code at
https://github.com/ldkong1205/Robo3D project page at
https://ldkong.com/Robo3