Flexible fluorescent crystalline materials exhibit both
mechanical
and optical properties and have received great attention due to their
potential applications in flexible optical devices. Simultaneously
adjusting the mechanical and optical properties of crystalline materials
remains interesting and challenging. In the present work, a guest
molecule was introduced via hydrogen-bonded solvation, which achieved
excellent mechanical elasticity and higher fluorescence emission than
that of the host heterocyclic Schiff base molecule crystal itself.
The crystal structure–property relationship and the molecular
mechanism of the elasticity were then investigated in detail. It revealed
that solvent molecules play a key role in changing both the stacking
of fluorescent molecules and the interaction energy framework. In
addition, the flexible fluorescent solvate exhibits a good waveguide
property. A bent crystal was found to have a larger optical loss coefficient
than a straight crystal. Furthermore, the size effect on the optical
loss coefficient of the waveguide was discussed in which the optical
loss coefficient decreases as the sizes increase. Such a size effect
is usually neglected in waveguide material research and should be
complemented in the performance evaluation of optical waveguides