Preparation of ultralow-friction surface films on vanadium diboride.

Abstract

In this paper, we present a simple annealing procedure (which we refer to as ''flash-annealing'' because of short duration) that results in the formation of an ultralow friction surface film on vanadium diboride (VB{sub 2}) surfaces. This annealing is done in a box furnace at 800 C for a period of 5 min. During annealing, the exposed surface of the VB{sub 2} undergoes oxidation and forms a layer of boron oxide (B{sub 2}O{sub 3}). In open air, the B{sub 2}O{sub 3} layer reacts spontaneously with moisture and forms a boric acid (H{sub 3}BO{sub 3}) film. The friction coefficient of a 440C steel pin against this H{sub 3}BO{sub 3} film is {approx}0.05, compared to 0.8 against the as-received VB{sub 2}. Based on Raman spectroscopy and electron microscopy studies, we elucidate the ultralow friction mechanism of the flash-annealed VB{sub 2} surfaces

    Similar works