Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO:N layer


Amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) having an ultra-thin nitrogenated a-IGZO (a-IGZO:N) layer sandwiched at the channel/gate dielectric interface are fabricated. It is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies within the a-IGZO:N layer is suppressed due to the formation of N-Ga bonds. Meanwhile, low frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops as the nitrogen content within the a-IGZO:N layer increases. The improved interface quality upon nitrogen doping agrees with the enhanced bias stress stability of the a-IGZO TFTs.This work was supported in part by the State Key Program for Basic Research of China under Grant Nos. 2010CB327504, 2011CB922100, and 2011CB301900; in part by the National Natural Science Foundation of China under Grant Nos. 60936004 and 11104130; in part by the Natural Science Foundation of Jiangsu Province under Grant Nos. BK2011556 and BK2011050; and in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions

    Similar works