Polycyclic tetramate macrolactams (PoTeMs) are a family
of structurally
intriguing bioactive natural products. Although the presence of the N-28 methyl group is known to affect bioactivities of some
PoTeMs, the mechanism for this methylation remains unclear. We report
here the identification and characterization of the 28-N-methyltransferase for HSAF analogues, which is encoded by a gene
located outside the HSAF (heat-stable antifungal factor) cluster in Lysobacter enzymogenes C3. Our data suggested that 28-N-methyltransferase utilizes S-adenosylmethionine
(SAM) to methylate HSAF analogues, and acts after the dicyclic and
tricyclic ring formation and prior to C-3 hydroxylation. Kinetic analysis
showed that the optimal substrate for the enzyme is 3-dehydroxy HSAF
(3-deOH HSAF). Moreover, it could also accept PoTeMs bearing a 5–6
or 5–6–5 polycyclic system as substrates. This is the
first N-methyltransferase identified in the family
of PoTeMs, and the identification of this enzyme provides a new tool
to generate new PoTeMs as antibiotic lead compounds