CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Predicting all-cause readmissions using electronic health record data from the entire hospitalization: Model development and comparison.
Authors
Ruben Amarasingham
Christopher Clark
+6 more
Ethan A Halm
Anil N Makam
Oanh Kieu Nguyen
Ferdinand Velasco
Bin Xie
Song Zhang
Publication date
1 July 2016
Publisher
eScholarship, University of California
Abstract
BackgroundIncorporating clinical information from the full hospital course may improve prediction of 30-day readmissions.ObjectiveTo develop an all-cause readmissions risk-prediction model incorporating electronic health record (EHR) data from the full hospital stay, and to compare "full-stay" model performance to a "first day" and 2 other validated models, LACE (includes Length of stay, Acute [nonelective] admission status, Charlson Comorbidity Index, and Emergency department visits in the past year), and HOSPITAL (includes Hemoglobin at discharge, discharge from Oncology service, Sodium level at discharge, Procedure during index hospitalization, Index hospitalization Type [nonelective], number of Admissions in the past year, and Length of stay).DesignObservational cohort study.SubjectsAll medicine discharges between November 2009 and October 2010 from 6 hospitals in North Texas, including safety net, teaching, and nonteaching sites.MeasuresThirty-day nonelective readmissions were ascertained from 75 regional hospitals.ResultsAmong 32,922 admissions (validation = 16,430), 12.7% were readmitted. In addition to many first-day factors, we identified hospital-acquired Clostridium difficile infection (adjusted odds ratio [AOR]: 2.03, 95% confidence interval [CI]: 1.18-3.48), vital sign instability on discharge (AOR: 1.25, 95% CI: 1.15-1.36), hyponatremia on discharge (AOR: 1.34, 95% CI: 1.18-1.51), and length of stay (AOR: 1.06, 95% CI: 1.04-1.07) as significant predictors. The full-stay model had better discrimination than other models though the improvement was modest (C statistic 0.69 vs 0.64-0.67). It was also modestly better in identifying patients at highest risk for readmission (likelihood ratio +2.4 vs. 1.8-2.1) and in reclassifying individuals (net reclassification index 0.02-0.06).ConclusionsIncorporating clinically granular EHR data from the full hospital stay modestly improves prediction of 30-day readmissions. Given limited improvement in prediction despite incorporation of data on hospital complications, clinical instabilities, and trajectory, our findings suggest that many factors influencing readmissions remain unaccounted for. Further improvements in readmission models will likely require accounting for psychosocial and behavioral factors not currently captured by EHRs. Journal of Hospital Medicine 2016;11:473-480. © 2016 Society of Hospital Medicine
Similar works
Full text
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021