Multi-task learning, in which several tasks are jointly learned by a single
model, allows NLP models to share information from multiple annotations and may
facilitate better predictions when the tasks are inter-related. This technique,
however, requires annotating the same text with multiple annotation schemes
which may be costly and laborious. Active learning (AL) has been demonstrated
to optimize annotation processes by iteratively selecting unlabeled examples
whose annotation is most valuable for the NLP model. Yet, multi-task active
learning (MT-AL) has not been applied to state-of-the-art pre-trained
Transformer-based NLP models. This paper aims to close this gap. We explore
various multi-task selection criteria in three realistic multi-task scenarios,
reflecting different relations between the participating tasks, and demonstrate
the effectiveness of multi-task compared to single-task selection. Our results
suggest that MT-AL can be effectively used in order to minimize annotation
efforts for multi-task NLP models.Comment: Accepted for publication in Transactions of the Association for
Computational Linguistics (TACL), 2022. Pre-MIT Press publication versio