Channel state information (CSI) plays a critical role in achieving the
potential benefits of massive multiple input multiple output (MIMO) systems. In
frequency division duplex (FDD) massive MIMO systems, the base station (BS)
relies on sustained and accurate CSI feedback from the users. However, due to
the large number of antennas and users being served in massive MIMO systems,
feedback overhead can become a bottleneck. In this paper, we propose a
model-driven deep learning method for CSI feedback, called learnable
optimization and regularization algorithm (LORA). Instead of using l1-norm as
the regularization term, a learnable regularization module is introduced in
LORA to automatically adapt to the characteristics of CSI. We unfold the
conventional iterative shrinkage-thresholding algorithm (ISTA) to a neural
network and learn both the optimization process and regularization term by
end-toend training. We show that LORA improves the CSI feedback accuracy and
speed. Besides, a novel learnable quantization method and the corresponding
training scheme are proposed, and it is shown that LORA can operate
successfully at different bit rates, providing flexibility in terms of the CSI
feedback overhead. Various realistic scenarios are considered to demonstrate
the effectiveness and robustness of LORA through numerical simulations