CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulates the expression of transforming growth factor-beta 1
Authors
MCP Leung
SCL Lo
FKW Siu
KF So
Publication date
1 January 2002
Publisher
'Wiley'
Doi
Abstract
Background and Objectives: Nitric oxide (NO) has been shown to be neurotoxic while transforming growth factor-beta 1 (TGF-β1) is neuroprotective in the stroke model. The present study investigates the effects of low energy laser on nitric oxide synthase (NOS) and TGF-β1 activities after cerebral ischemia and reperfusion injury. Study Design/Materials and Methods: Cerebral ischemia was induced for 1 hour in male adult Sprague-Dawley (S.D.) rats with unilateral occlusion of middle cerebral artery (MCAO). Low energy laser irradiation was then applied to the cerebrum at different durations (1, 5, or 10 minutes). The activity of NOS and the expression of TGF-β1 were evaluated in groups with different durations of laser irradiation. Results: After ischemia, the activity of NOS was gradually increased from day 3, became significantly higher from day 4 to 6 (P < 0.001), but returned to the normal level after day 7. The activity and expression of the three isoforms of NOS were significantly suppressed (P < 0.001) to different extents after laser irradiation. In addition, laser irradiation was shown to trigger the expression of TGF-β1 (P < 0.001). Conclusions: Low energy laser could suppress the activity of NOS and up-regulate the expression of TGF-β1 after stroke in rats. © 2002 Wiley-Liss, Inc.link_to_subscribed_fulltex
Similar works
Full text
Available Versions
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/67942
Last time updated on 01/06/2016
The Hong Kong Polytechnic University Pao Yue-kong Library
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ira.lib.polyu.edu.hk:10397...
Last time updated on 10/02/2018