The magnetization process, the susceptibility and the specific heat of the
spin-1/2 AF-AF-F and F-F-AF trimerized quantum Heisenberg chains have been
investigated by means of the transfer matrix renormalization group (TMRG)
technique as well as the modified spin-wave (MSW) theory. A magnetization
plateau at m=1/6 for both trimerized chains is observed at low temperature.
The susceptibility and the specific heat show various behaviors for different
ferromagnetic and antiferromagnetic interactions and in different magnetic
fields. The TMRG results of susceptibility and the specific heat can be nicely
fitted by a linear superposition of double two-level systems, where two fitting
equations are proposed. Three branch excitations, one gapless excitation and
two gapful excitations, for both systems are found within the MSW theory. It is
observed that the MSW theory captures the main characteristics of the
thermodynamic behaviors at low temperatures. The TMRG results are also compared
with the possible experimental data.Comment: 11 pages, 10 figure