Initiation des étudiants en médecine à l’apprentissage profond par le biais de l’étiquetage d’images : une approche nouvelle pour répondre au besoin de mieux les familiariser avec l’intelligence artificielle

Abstract

Implication Statement Our approach addresses the urgent need for AI experience for the doctors of tomorrow. Through a medical education-focused approach to data labelling, we have fostered medical student competence in medical imaging and AI. We envision our framework being applied at other institutions and academic groups to develop robust labelling programs for research endeavours.  Application of our approach to core visual modalities within medicine (e.g. interpretation of ECGs, diagnostic imaging, dermatologic findings) can lead to valuable student experience and competence in domains that feature prominently in clinical practice, while generating much needed data in fields that are ripe for AI integration.Énoncé des implications de la recherche Notre approche répond au besoin urgent de familiariser les médecins de demain avec l’IA. Nous contribuons au développement de leurs compétences en imagerie médicale et en IA par une approche à l’étiquetage des données axée sur l’éducation médicale. Nous envisageons l’adoption de notre cadre par d’autres établissements et groupes universitaires souhaitant créer des programmes d’étiquetage solides pour leurs projets de recherche. L’application de notre approche aux principales techniques d’imagerie médicale (par exemple, l’interprétation des ECG, l’imagerie diagnostique, les résultats dermatologiques) peut permettre aux étudiants d’acquérir une expérience et des compétences précieuses dans des domaines importants de la pratique clinique, tout en générant des données indispensables dans des champs qui sont prêts pour l’intégration de l’IA

    Similar works