Composite sandwich structures with a variety of core materials are increasingly utilized for wide range of structural applications. This paper presents experimental and numerical investigation on low-velocity impact response of sandwich composite panels composed of stitched foam core and E-glass fiber/Polyurethane (PU) facesheets. The samples were fabricated using low-cost vacuum assisted resin transfer molding (VARTM) process. Low velocity impact response of the sandwich panels was investigated under four different impact energy levels (10J, 15J, 20J, and 30J) using a Dynatup drop tower Instron impact machine. Based on the load and energy histories, parameters including maximum load, penetration depth, and total energy absorbed have been investigated under the four different impact energy levels listed above. A three-dimensional dynamic finite element model was developed for the stitched sandwich structures under low velocity impact