CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease
Authors
Evgeni V. Bratovanov
Benjamin Dose
+14 more
María García-Altares
Ron Hermenau
Christian Hertweck
Julian Hniopek
Hak Joong Kim
Jana Kumpfmüller
Sarah Niehs
Jürgen Popp
Claudia Ross
Kirstin Scherlach
Michael Schmitt
Anja Silge
Tawatchai Thongkongkaew
David Zopf
Publication date
1 January 2021
Publisher
Weinheim : Wiley-VCH
Doi
Cite
View
on
PubMed
Abstract
Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control. © 2021 The Authors. ChemBioChem published by Wiley-VCH Gmb
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
Repositorium für Naturwissenschaften und Technik (TIB Hannover)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:oa.tib.eu:123456789/8418
Last time updated on 23/07/2022