CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Probabilistic Load Flow based on Parameterized Probability-boxes for Systems with Insufficient Information
Authors
Hafez Amiri
Mazaher Karimi
+3 more
Mohammad Mohammadi
Mohammad Rastegar
Amir Rostami
Publication date
30 November 2021
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
The increased penetration of intermittent renewable energy sources and random loads has caused many uncertainties in the power system. It is essential to analyze the effect of these uncertain factors on the behavior of the power system. This study presents a new powerful approach called probability-boxes (p-boxes) to consider these uncertainties by combining interval and probability simultaneously. The proposed method is appropriate for problems with insufficient information. In this paper, the uncertainty of distribution functions is modeled according to the influence of natural factors such as light intensity and wind speed. First, the p-boxes load flow problem is studied using an appropriate point estimation method to calculate statistical moments of probabilistic load flow (PLF) outputs. Then, the Cornish–Fisher expansion series is used to obtain the probability bounds. The proposed approach is analyzed on the IEEE 14-bus, and IEEE 118-bus test systems consist of loads, solar farms, and wind farms as p-boxes input variables. The obtained results are compared with the double-loop sampling (DLS) approach to show the proposed method’s precision and efficiency.©2021 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/This work has been funded by Academy of Finland (Grant Number: Profi4/WP2)fi=vertaisarvioitu|en=peerReviewed
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Osuva
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:osuva.uwasa.fi:10024/13272
Last time updated on 08/12/2021