Prokaryotic and Viral Community Composition of Freshwater Springs in Florida, USA

Abstract

Aquifers, which are essential underground freshwater reservoirs worldwide, are understudied ecosystems that harbor diverse forms of microbial life. This study investigated the abundance and composition of prokaryotic and viral communities in the outflow of five springs across northern Florida, USA, as a proxy of microbial communities found in one of the most productive aquifers in the world, the Floridan aquifer. The average abundances of virus-like particles and prokaryotic cells were slightly lower than those reported from other groundwater systems, ranging from 9.6 × 103 ml−1 to 1.1 × 105 ml−1 and 2.2 × 103 ml−1 to 3.4 × 104 ml−1, respectively. Despite all of the springs being fed by the Floridan aquifer, sequencing of 16S rRNA genes and viral metagenomes (viromes) revealed unique communities in each spring, suggesting that groundwater microbial communities are influenced by land usage in recharge zones. The prokaryotic communities were dominated by Bacteria, and though the most abundant phyla (Proteobacteria, Cyanobacteria, and Bacteroidetes) were found in relatively high abundance across springs, variation was seen at finer taxonomic resolution. The viral sequences were most similar to those described from other aquatic environments. Sequencing resulted in the completion of 58 novel viral genomes representing members of the order Caudovirales as well as prokaryotic and eukaryotic single-stranded DNA (ssDNA) viruses. Sequences similar to those of ssDNA viruses were detected at all spring sites and dominated the identifiable sequences at one spring site, showing that these small viruses merit further investigation in groundwater systems

    Similar works

    Full text

    thumbnail-image

    Available Versions