CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
The risk of developing a second cancer after receiving craniospinal proton irradiation
Authors
James D. Cox
Jonas D. Fontenot
+9 more
David Kornguth
Anita Mahajan
Dragan Mirkovic
Radhe Mohan
Wayne D. Newhauser
Marilyn Stovall
Phillip J. Taddei
Shiao Woo
Yuanshui Zheng
Publication date
20 April 2009
Publisher
LSU Digital Commons
Doi
Cite
View
on
PubMed
Abstract
The purpose of this work was to compare the risk of developing a second cancer after craniospinal irradiation using photon versus proton radiotherapy by means of simulation studies designed to account for the effects of neutron exposures. Craniospinal irradiation of a male phantom was calculated for passively-scattered and scanned-beam proton treatment units. Organ doses were estimated from treatment plans; for the proton treatments, the amount of stray radiation was calculated separately using the Monte Carlo method. The organ doses were converted to risk of cancer incidence using a standard formalism developed for radiation protection purposes. The total lifetime risk of second cancer due exclusively to stray radiation was 1.5% for the passively scattered treatment versus 0.8% for the scanned proton beam treatment. Taking into account the therapeutic and stray radiation fields, the risk of second cancer from intensity-modulated radiation therapy and conventional radiotherapy photon treatments were 7 and 12 times higher than the risk associated with scanned-beam proton therapy, respectively, and 6 and 11 times higher than with passively scattered proton therapy, respectively. Simulations revealed that both passively scattered and scanned-beam proton therapies confer significantly lower risks of second cancers than 6 MV conventional and intensity-modulated photon therapies. © 2009 Institute of Physics and Engineering in Medicine
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
LSU Scholarly Repository (Louisiana State Univ.)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.lsu.edu:physics...
Last time updated on 26/10/2023