A dynamic test platform for evaluating control algorithms for a supercavitating vehicle

Abstract

The use of supercavitation to enable marine vehicles to travel at extraordinary speeds is a topic of considerable interest. The control of these vehicles poses new challenges not faced with fully wetted vehicles due to a complex interaction between the vehicle and the cavity that it rides in. Some of the existing models make assumptions that may not be valid for a maneuverable vehicle. Furthermore, since there are various models being suggested for planing forces as well as different ways of obtaining fin and cavitator forces, there is a lack of unity among the equations used to calculate the hydrodynamic forces imparted on such a vehicle. Experimental test platforms have been developed at St. Anthony Falls Laboratory to enable testing and validation of control algorithms and hydrodynamic models. Previous efforts have revealed the destabilization of marginal supercavities by control surfaces, especially when a cavity is being maintained with ventilation [1]. Our latest water tunnel test platform is a body of revolution with an actuated cavitator on the model forebody, actuated fins that protrude through the cavity surface, and variable pitch of the model body, all supported by a six-axis force balance. In this paper we will present a brief description of the forces present in our mathematical model of a supercavitating vehicle, and then present the new experimental test platform that will be used to validate, and expand on this model.http://deepblue.lib.umich.edu/bitstream/2027.42/84290/1/CAV2009-final110.pd

    Similar works