The Effect of Soft Tissue and Bone Morphology on the Stresses in the Foot and Ankle

Abstract

The foot and ankle interface with the ground, thus they absorb reaction forces and initiate load distribution through the body. The plantar fascia (PF) is a flexible structure that absorbs reaction forces and distributes loading across the foot. It is frequently a source of foot pain especially when people have plantar fasciitis and/or diabetes mellitus. Finite element (FE) models of the foot and ankle were created to examine the function however, the plantar fascia is frequently modeled as a 1D tension only spring, which does not represent variations caused by injury and/or disease. As models move toward being patient specific, understanding what components of a model can be generic versus what should be patient specific is critical when minimizing the time to create and simulate results. The purpose of this dissertation was to develop 3D finite element foot and ankle models including different thickness of 3D solid plantar fascia (i.e., 3mm, 4mm, and 5mm) and different ankle positions (i.e., neutral position, 10° dorsiflexion, and 10° plantarflexion). Additionally, the effect of different thicknesses of cartilage (i.e., 0.5mm, 1.0mm, and 1.7mm) and bone morphology (health and injured) was investigated in a model of the talocrural joint. As the thickness of plantar fascia increased, the strains of plantar fascia were increased, and the peak plantar pressure moved from hindfoot to forefoot. Also, the peak plantar pressures were highest when the foot was in 10° of plantarflexion and lowest in the neutral position. Finally, contact area decreased with decreasing cartilage thickness, with a greater decrease in contact area in healthy ankles. In 3 models, contact stress increased as cartilage thickness decreased. The fourth model had little decrease in contact area, thus the contact pressures may have been affected more by bone morphology. In conclusion, in models of the foot and ankle, the plantar fascia can be generic if it is less than 4 mm thick, a variety of foot positions should be considered, and specific bone morphologies should be included in the ankle if there is a known pathology

    Similar works