Several phenomena related to the critical behaviour of non-interacting
electrons in a disordered 2d tight-binding system with a magnetic field are
studied. Localization lengths, critical exponents and density of states are
computed using transfer matrix techniques. Scaling functions of isotropic
systems are recovered once the dimension of the system in each direction is
chosen proportional to the localization length. It is also found that the
critical point is independent of the propagation direction, and that the
critical exponents for the localization length for both propagating directions
are equal to that of the isotropic system (approximately 7/3). We also
calculate the critical value of the scaling function for both the isotropic and
the anisotropic system. It is found that the isotropic value equals the
geometric mean of the two anisotropic values. Detailed numerical studies of the
density of states for the isotropic system reveals that for an appreciable
amount of disorder the critical energy is off the band center.Comment: 6 pages RevTeX, 6 figures included, submitted to Physical Review